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The model is valid for large displacements of the spine and treats
material nonlinearities.

The basic model is modular in format, so that various compon-
ents may be omitted or replaced by simplified representations.
Thus, while the complete model is rather complex and involves sub-
tantial computational effort, various simplified models are
vailable that are quite effective in duplicating the response of
the complete model within a range of conditions. Three methods of
solution z2re available for the analysis: direct integration in time
by either an explicit, central difference method or by an implicit,
trapezoidal method, and a frequency analysis mdthod.

erent rates of onset, ejection at angles, effects of lumbar
curvature, and eccentric head loadings. It is shown that large
initial curvatures and perfectly vertical acceleration loadings re-
sult in substantial flexural response of the spine, which cause
large bending moments. It is further shown that the combination of
Ehe spine s low flexural stiffness, initial curvature, and mass

(F&%ﬁ,ReSUItS are presented for a variety of conditions, such as

eccentricity are such that stability cannot be maintained in a 10 g
jection without restraints or spine-torso-musculature interaction

The complete models were used mainly to study the effects of
the rib cage and viscera on spinal response. The flexural stiffnes
of the torso is increased substantially by a visceral model, even
{fthough it has no inherent flexural stiffness. In addition, the
viscera provide significant reductions in the axial loads,

Modal analyses were performed on several of the models under
various conditions. Numerous flexural natural frequencies under 10
cps were found, but the lowest axial frequency is of the order of

R0 cps. We hypothesized that the peaks in the 5-7 Hz range in
driving point impedances observed experimentally in axial shaker
table measurements result from parametric excitation of the flexural
nodes.,
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Mr. Ints Kaleps of the Mathematics and Analysis Branch, Biodyna-
mics and Bionics Division of the Aerosrace Medical Research Lab-

oratory, Aerospace Medical Division of the Air Force Systems Command at
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CHAPTER 1

INTRODUCTION

1. Objectives

S P e g R T 7 T
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The spine is the primary structural element for transmitting

forces to the upper torso and head in high acceleration environ-

ments such as pilot ejection. Thus in the study of ejection
response, it is common to model the element for force transmission

by a bar or beam and to neglect the torso and rib cage. These bar-

e AR s e T A K A e L

beam models have evolved into two general classes: the so-called

continuum models, in which the bar is considered as homogeneous,

At a1 o B TA

and the discrete models, in which the individual vertebrae are

represented as rigid bodies and are connected in series by deform-

able elements, which represent the intervertebral disc and other

connective tissues. These two types of models are in fact very
similar in character, for if the scale of discretization employed
in the homogeneous models is comparable to the number of vertebral 1
levels, the difference equations of the homogeneous models will be
very similar to that of the discrete models. The primary distinc-
tion between the two types of models lies in the possibility of
directly using disc and ligament properties in the discrete models,

whereas the continuum models require determination of extrapolated

e niihihtiens 7. e

material properties, which represent the composite behavior of

the discs and vertebrae. Both the discrete models and homogeneous
bar-beam models that have been developed so far have been restrict-

ed to one or two dimensional behavior.

The principal objective of this investigation is the develop-

ment of a three dimensional, discrete model of the spine and head.

7




In addition, the model was developed in a manner so that other
aspects of the torso, such as the rib cage and viscera, could be
modelled and their effects on the behavior of the spine investi-
gated. This interaction of the spine with the torso is parti-
cularly important in responses which involve substantial flexure
of the spine, for the flexural stiffness of the spine is very low,
and as shown in results to be presented subsequently, are not
sufficient to insure the stability of the spine in acceleration
environments commonly found in pilot ejection. Significant flexure
may be induced either by initial curvatires of the spine, or by
asymmetric properties, such as asymmetric mass distribution. Thus
the ability to investigate the behavior of the spine in situations
involving substantial bending is of practical importance.

Because the .tr2atment of elements, such as for example, the
rib cage, in sufficient detail to accurately represent its behav~-
ior in a wide variety of situations involves substantial comput-
ational effort, the model has been developed so that portions of'
it may be replaced by simplified representations. These simpli-~
i{ied representations are quite effective in a more limited range
of situations. Thus, the rib cage can be replaced by an equiva-
lent beam model, and a detailed representation of the cervical
vertebrae can be replaced by a single beam element. These simpli-
fications provide significant savings in computer time, and are
therefore quite valuable when parametric studies are undertaken.

A generai description of the characteristics of the model is

given in the third section of this chapter. The details of the

mathematical formulation, material properties, and anatomical repre-

8

B T L e W e e




3

Py

TRCBTE iz

2 Winnls o R

it
A,
H

g i

i

e T T e b o T

” oaeay - &t X s O e

X AR A S o \fswa 5

R B R ek 0 - T e R
z 3 S, .

sentation are given in the next three chapters. Some of the more
interesting and significant results obtained during the course

of this study are then described. Finally, the input data formats
for both the dynamic simulation and the graphics package are given

in the Appendices.

2. Literature Review

To put this work in proper prospective, we will first review
previous models of the spine, using the customary classification
of continuous and discrete models. Latham (1957) is usually
cited as the first to develop a mathematical model for describing
the dynamic response of the spine to +Gz acceleration. Latham's
one degree of freedom model consisted of the rigid masses repre-
senting the body and the ejection seat, interconnected by a s»hring.
It was developed to study the dynamic overshoot of the body when
seat cushions of varying resiliency were placed between the pilot
and the ejection seat. Also included in Latham's work is the
first study concerning the natural frequency response of the human
body in the seated positiou.

Payne (1961) also developed a discrete, one degree of free-
dom model of the spine. A rigid mass was used to represent the
head and upper torso, and the spine was modelled as a spring with
a dashpot in parallel. The stiffness of the spring was chosen to

match the lowest axial natural frequency of the human body as

predicted from the lowest peak in the axial driving point impedance

measur :ments. Although this single spring model could not predict

9
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the force distribution in the spine, it was and still is consid-
ered an accurate representation of the dynamic response associated
with the acceleration profile of the ejection seat. Subsequently,
an eight dr~gree of freedom model was developed by Toth (1966).

It corsisted c¢f rigid masses representing vertebrae T1ll through
L5 and the pelvis, interconnected by springs and dampers which
represented the intervertebral discs. This was the first use of
multiple mass, damped spring models and the first discrete model
to idealize individual discs.

Orne and Liu (1970) proposed the first model that included
the shear and bending resistance of the intervertebral disc. The
model employed a small strain, large displacement formulatiom.
Each of the vertebrae, Tl through L5, was represented as a rigid
body in two dimensional space with three degrees of freedom per
vertebra. Spinal curvature and variations of disc stiffness with
vertebral level were treated. A three parameter viscoelastic
force-deflection relation was us:d to represent the material pro-
perties of the intervertebral discs. Orne and Liu were also the
first Lo model Lhe inertial properties by assigning to each motion
segment the total inertia of the associated segment of the torso.
Although this appears somewhat unreasonable in that the motion of
the viscera, because oI its low shear stiffness, is obviously
quite different from the motion of the vertebrae, it was quite
successful in duplicating the characteristics of experimentally ob-
served response and has been used by many other investigators.
The success of this procedure may be explained in terms of added

massas resulting from the stiffness of the viscera: thus, it is

10
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similar to the "added mass" technique used to analyze the vibra-
tion of structures within a fluid. Also included in the model
was the eccentricity of the mass center for each motion segment,
which was assumed to be uniform along the spinal column with
each segment having the same inertial properties. The model did
not include the interactions of the spine with the torso,
ejection seat, or harness apparatus. Failure to represent these
interactions in a large displacement formulation results in un-
realistic deformed configurations of the spinal column and may
invalidate the force distributions predicted py the model.

Prasad and King (1974) extended the Orne and Liu model by
including the articular facet interaction. The motivation for
this extension was to model a secondary load path in the spinal
column which is effected by the articular facets as indicated by
the experimental work of Prasad, et al. (1973). The interaction
of the articular facets was modelled by two springs, one limiting
relative rotations and the other limiting the relative sliding of
adjacent vertebrae.

Stiffness values for the articular facets appear to have been
chosen rather arbitrarily, sincz no reference is made as to how
the axial stiffness was determined and no value for the rotational
stiffness is cited. Of the axial facet stiffness values listed,
the largest values are assigned in the lumbar region and are of
the same order of magnitude as the disc axial stiffness. Such
large stiffness values may be realistic in certain directions,
where the facet effectively imposes a kinematic constraint. How=-

ever, the deformation-resisting character of the facet joint in

11
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other directions should be modelled with a much lower stiffness

value, as pointed out by Schultz, et al. (1973). Also included
in the model is an auxiliary force representation of the ejection

seat and harness interaction, although the details of this aspect

of themodel were not described.

A parallel history can be traced in the homogeneous (or con~
tinuum) models. The first continuum model was proposed by Hess é
(1956), who included only axial response. Subsequently, Moffat,

et al. (1971) included both axial and bending response by using a

bzam type model. However, the analysis was restricted to small
displacements.

Recently, Liu, et al. (1973) developed bar-beam models, in-

cluding large displacements in the analyses. The stiffness pro-
perties of this mocdel were based on that of the isolated, liga-
mentous spine and the responses they exhibited demonstrated very

large deflections.

3. Ceneral Description of Model

The model represents the human body »y a collection of rigid
bodies interconnected by deformable elements. The rigid bodies _ﬂ
are used for the modelling of bones, while the deformable

elements are used to model ligaments, muscles and connective

tissues. The treatment of bones as rigid bodies is preferable

from both the viewpoint uf numerics and modelling, for the stiff-

ness of bones is usually orders of magnitudes greater than that

of connective tissue, so that if both are modelled as deformable,

12
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the resulting numerical problem is poorly conditioned. However,
long slender bones, such as ribs, may be modelled as deformable.
The deformable elements may also be used to model entities exter-
nal to the body, such as restraint systems and harnesses.

For purposes of describing the model, it is worthwhile to
distinguish between the following:
1) The computer-based method of solution, or mathematical model,
which is a rather general system for the treatment of the dyna-
mics of collections of rigid bodies interconnected by deformable
elements, and
2) The sépkific models of the spine, torso and ejection system,
which constitute a data base for the computer system.

We will first describe in general terms the mathematical
model employed in the computer simulation. This is followed by
a general description of the data sets which have been developed

for modelling the spine, head, and torso in ejection problems.

4. Mathematical Model

The computer procedure is basically a matrix structural
analysis technique, which serves as a versatile framework for

constructing, the equations of motion. The program enables these
/"*

P

equations of motion to be integrated in time by either explicit
or implicit techniques, or analyzed by modal procedures, which
give the natural frequencies and modes of the model. The formul-
ation is completely three dimensional and treats arbitrarily

lurge rotations and displacements of the rigid bodies. However,

13

—ad 3

IR EE e Pt RSP Co N

o AT




N
- S

o i 8
B

‘

b g S

L T e B
T E

PSS

the deformation of some of the elements is restricted to be moder-

ately small. Material properties may be linear or nonlinear and

linear viscous forces can be included.

Nodes and Coordinate Systems. Two types of nodes are used:

a) primary nodes, each of which has six degrees of freedom
consisting of three translations and three rotations; the cen-
troid of a rigid body must be a primary node;

b) secondary nodes, each of which is connected through a rigid
body to a primary node and which thus has no independent degrees
of freedom.

An arbitrary number of secondary nodes may be associated
with any rigid body, and they serve principally as a means of
connecting deformable elements to a rigid body at a point other
than the centroid.

The configuration of the model is described by the position
and orientation of the primary nodes. The original position of
node I is denoted by x;I {(i=1 to 3 representing the x, y, and z

components); the new position X;p are obtained by adding the dis-

placements Ujqr SO
= 40
Xip = X{p t Uy (1.1)

The orientation of a primary node is described by a triad of
orthogonal unit vectors 311' 321, 331, which rotate with the node.
In order to describe the system, we will define three types

of coordinate systems:

1. a fixed, global set of coordinates (x, y, z), or X1

14
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2. body coordinates (x, §, E)I; a set of body coordinates is !
associated with each primary node, so that x, §, and z coincide

with BlI' 321, and 331, respectively for each node. The origin

of the iiI system must be the centroid of the mass at node I;

3. element coordinates (X, §, z); a set of element coordinates

is associated with each element, and the element coordinates
rotate and translate with the element in a manner to be specified
later. The §, §, and 2 axes are associated with unit vectors El' |
32, and 33, respectively for each element.

Model Elements. The model consists of the following elements:

l. rigid bodies

2. spring elements

3. beam elements

4, hydrodynamic elements

E
|
5. elastic surfaces i
|

Rigid Bodies. Each rigid body may be arbitrarily oriented in

three dimensional space and may undergo arbitrarily large rota-
tions and translations. The centroid of the rigid body is
designated a primary node, (see Fig. 1), its coordinates in
space define the position of the rigid body. Each rigid body has
both translational and rotational inertia. The orientation of

the rigid body is described by the triad of orthogonal unit

vectors gl' 32, and 33. The. e vectors must coincide with the

priicipal axes of the moment of inertia. The moments of inertia

about 31' gz, and 33 are Il' 12, and 13, respectively. In

15
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Figure 1. Rigid body representation and coordinate systems:
global coordinates (x,y,z); body coordinates (x,¥,2)

and element coordinates (X,¥,Z).
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addition to the primary nodes, any number of secondary nodes mayv

be associated with the rigid body.

Spring Elements. Spring elements are deformable elements with

only axial stiffness, which may interconnect any two nodes of the

system. A typical spring element is shown in Fig. 2.

AA
dxT.fxI

Figure 2. Spring Element

The element may be connected to either primary or secondary nodes.
The axial force in the element will be denoted by T, with T
positive in tension; the elongation is designated by 6. The

axial force-elongation law is
- 3
T = kld + k26 (1.2)

where either kl and k2 may be zero. A tension cutoff

17
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may be added to that T = 0 whenever § < 0; this is useful for

ligaments and other elements that become slack whenever the elonga-

tion is negative.

Beam Element. A beam element may interconnect any two nodes,

e .

which may be either secondary or primary nodes. Beam elements
include axial stiffness, torsional stiffness and bending stiff-

ness. The resulting nodal forces are shown in Fig. 3: fo and

fo arise from axial stiffness, and myI’ sz, myJ and sz arise

from the bending stiffness about the two principal coordinates of

A ~ ~
the cross-section, y and z, and m ; arises from torsional stiff-

ness. For all moments, the right hand rule sign convention is

used as shown in Fig. 3.

>
o

The orientation of the § and z axes is given by including a I

B

third node for each beam element, called an orientation node, -l
that lies in the y~X plane of the original orientation of the beam.

There are two available modes for computing the forces and y *
moments in the beam. In the first mode, functional forms are ‘
assumed for the overall response of the beam; these are not con-

sistent with any homogeneous material properties but allow the

introduction of certain nonlinearities. The forms are:

axial force

o _ _ ,a a,s
fo = T = kld + k26

optional T=0 if 6§ < 0 (1.3)

18
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bending in %-¥ plane

m b 4+ 2-¢ 8
AzI - kz z 2z AzI (1.4b) 3
m 1+% 2-9 4+% ) '

zJd Z z Z 2J L

i
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!
For linear homogeneous materials, the bending constants are given {
|

through standard engineering analysis by i

e 1 ~ SO
ky=-——¥)’M +zal(|ely| + |9zy|)
(1.5)
EI
b_ ZZ _:_l-_ ~ A 2
kz Ty 2 a2(|elzl + IBZZl)

where E is Young's modulus, £ the length of the element, and I the
section moduli, which are respectively
= f_[%zd*d“ I = /./:Zd*d* .6
Iyy o ydz . A y4dydz (1.6)

where the integral is over the cross-sectional area of the ele-

ment, A. The shear factor is given by

12EI
o = éigi’ (1.7) ]

where G is the shear mcdulus and As the effective area in shear.

The constants a, and a, ure included to permit an approximation

to a cubic moment-curvature behavior.
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The second method of computing the bending moments and

axial force in the beam requires the cross-section of the beam to

L g ;,-.,.‘a.u_;,.‘f':-— eo
1 o .

be defined as a thin-walled member. The cross-section is defined

1l to NI, and the shape is assumed

R e e e

by the coordinates §i' Ei' b

to be prismatic, so that §i' ﬁi are constant with respect to X.

RN SLE T g

If this mode is used, the moments are computed directly from the

axial stresses ¢ by numerical integration. An arbitrary stress 2

strain law of the form

- s S 3
o - kle + kze {1.8)

may be used, with the option of tension cutoffs. No shear cor-

rections are made. This mode is useful for modelling elements

such as the walls of the torso.

In both modes, the torsional resistance is taken to be a

linear function of fhe tcrsional deformation and independent of the

other stresses in the element, i.e.

A _ t/\
m, k exIJ (1.9)

where ﬁx is the torgque, kt the torsional spring constant and axIJ

the torsional deformation. The shear forces are always obtainable

from equilibrium so no force-deflection law is necessary.

Hydrodynamic Element. This element is illustrated in Fig. 4. The

element is a pentahedron, with the two opposing triangular faces
considered to be rigid. The three nodes of each triangular face

must therefore be associated with the same primary node. There o
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Figare 4.

Hydrodynamic element.
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are no restrictions on the geometry of the element, other than
that the initial volume of the element be positive: this is in-
sured by numbering the nodes appropriately.

The force deflection characteristics of this element are ob-
tained from a linear pressure-dilatation relationship. The
pressures are transmitted through the rigid triangular plates to
the associated primary node in an energetically consistent
fashion. In addition to the linear pressure-dilatation stiffness,
a linear viscosity is available.

This element is useful for modelling components of the body
that exert resistance primarily to compressive deformations.
Because of the presence of the rigid plates, the resistance tends
to be directed through a line of action connecting the centroids
of the two triangular surfaces. Thus it is useful for modelling
articular facets, which have very strong directional properties,
and the viscera that effect resistance primarily through a verti-

cal axis.

Elastic Planes. An assemblage of planes may be prescribed in the

model to represent surfaces of the pilot's seat. Each plane is
described by locating three points on the plane, as shown in

Fig. 5. The planes restrain the motion of the nodes so that when
a node penetrates the plane, a force proportional to the extent
and rate of penetration is applied to the node in a direction nor-
mal to the plane.

all planes are considered to be rigidly linked together. The

23
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Figure 5.

Seat model representation.
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moticn of this assemblage of planes is prescribed through either

acceleration, velocity, or displacement histories.

5. General Description of Models

For purposes of illustrating how the mathematical model is
used to represent the pilot's anatomy, we will here describe two
representative models that have been used in these studies. The
first model is restricted to the isolated throacolumbar spine,
the cervical spine, the head, the seatback and restraint system.
The second model, in addition to the preceeding, includes a re-
presentation of the rib cace and viscera.

The first model is graphically depicted in Figs. 6 and 7,
which show a back view and a side view of the model in the seated
position, respectively. 1In all models described in this report,
the standard orientation for the global coordinate system is as
follows: the z-axis is positive vertically upward, the y-axis is
positive towards the back and the x-axis is oriented sideways;
thus the y-z plane corresponds to the sagittal plane, the x-z
plane corresponds to the frontal plane and the x-y plane corres-
ponds to the horizontal plane.

The graphical depiction in Figs. 6 and 7 show only the rigid
bodies employed in the model. Each vertebra and the head is re-
presented as a rigid body. The configuration of these rigid bodies
are prescribed by the initial position of the primary nodes in
X, Y, 2 space: each primary node must coincide with the mass center

of the rigid body. The positions of the primary nodes are

25

‘
TP PR L 1 a..s‘l

P

v Dy

SRRl

S uaE R R et

;
7
g
i
o
4
i
¢
£
i
¢

OO




i e
[P R S

o e o A i Bt 4

2 s

o -

TS M, et > v, ST N meen

Figure 6.

[

Back view of isolated ligamentous spine model.
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Side view of isolated ligamentous spine model.
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indicated in Fig. 7 by plus signs. As can be seen from the figure,

the primary nodes in many cases do not lie within the vertebrae
because the Liu, et al (1973) segment data was used to represent
the inertial properties of the body in this model, so that each
vertebra is associated with a segment of the torso.

The conceptualization used in modelling the inertial properties
of the human body differs markedly from that used in modelling the
stiffness properties. The stiffness model considers each vertebra
as a rigid body, with the spring elements and beam elements inter-
connecting these rigid bodies in a manner so as to approximate
force deformation characteristics of the human body. On the other
hand, from an inertial viewpoint, each rigid body represents a seg-
ment of the complete torso, and each vertebrae is considered to be
rigidly embedded in an associated segment of the torso. This
corresponds to the inertial approximation developed by Orne and Liu
(1971) and used by Prasad and King (1974). The more complex models
do not use this approximation, but as a consequence, are based on
less reliable data.

In the thoracolumbar spine, each pair of vertebrae is con-
nected by seven spring elements and one beam element. The inter-
vertebral disc is represented by a beam element, which joins the
geometrical centers of the endplates of each pair of adjacent
vertebrae. The spring elements represent the following ligaments
and connective tissues: the pair of spring elements which connect
the transverse process tips represent the intertransverse liga-
ments; one spring element, which connects the spinous process tips,

represents the intra- and supra-spinous ligaments; a pair of
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elements which connect posterior points on the vertebral bodies,
represent the ligamenta flava; two spring elements are used to
represent the articular facets. The latter are short, stiff ele-
ments and are primarily intended to represent the kinematic con-
straints resulting from the facets. All of these elements inter~
connect secondary nodes on the rigid body. In addition, the pri-
mary nodes are connected by additional beam elements which repre-
sent the stiffness of the torso and rib cage. Cubic moment

curvature relations are used in these elements so that their

bearing on small-displacement response is neglible. Details as to

the locations of the nodal points and the material properties of
the deformable elements may be found in Chapter IV.

In the cervical spine, adjacent vertebras are connected only
by elements representing the disc, the interspinous ligaments,
and the articular facets. The discs are represented by beam ele-
ments, the ligaments by spring elements, the articular facets are
represented by hydrodynamic elements. The triangular endplates
of the hydrodynamic element may be seen in Figs. 6 and 7. Because
these elements have resistance primarily through a line joining
the centroids of the two opposing triangular facets, these ele-
ments are more effective in representing the directional proper-
ties of articular facets than spring elements. The use of these
elements for the representation of the facets would also be
desirable in the lumbar and thoracic spines, but the procurement
of data for the location of the facet planes in these portions of
the spine has not been completed.

The head is a single rigid body joined to C2 by a beam

29
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element (Cl was not included in the model). In all the simulations

studied here, the helmet was assumed to move exactly like the head,

so that if a helmet was included in the study, the moment of in-
ertia and mass of the helmet was simply added to that of the head.
The seatback in this model is a plane surface, which is
vertically aligned and the bottom of the seat is horizontal. The
seat constrains the motion of the rigid bodies onl.ly when they come

in contact. The definition of the seatback is quite arbitrary, as

long as it can be described as a series of planes, so that alterna-

tive seatback designs can be studied by the model by simply
altering the description of these planes.

The restraint system in this model consists of 4 springs, 3
connecting the vertebrae Tl, T2, and T3 with the seatback, the
other connecting a secondary node on the pelvis with another point
on the seatback. The upper restraint belt is represented by three
springs to reduce the shear deformation. Again the positions of
these nodes are indicated in Fig. 7. The orientations and method
of interconnection for these elements is completely arbitrary so
that other harness systems can be modelled. However, important
aspects such as friction and the actual details of the geometry of
the restraint system have not yet been included.

One of the more complex models is represented in Figs. 8 and
9, which show the back and side views, respectively. The major
aims of this model are the separation of the inertial aspects of
the torso from that of the spine, the inclusion of certain

structural aspects of the rib cage, and the addition of an inde-

pendent load path through the viscera. These aims were implemented
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Figure 8. Back view of spine-torso model with rib cage.




Figure 9. Side view of spine-torso model with rib cage.
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as follows.
The rib cage is represented by a system of rigid bodies and
deformable elemer ts which includes separate rigid bodies for each
of the ribs and the sternum. Since each rib ismodelled as a
rigid body, the deformation of the thorax as a whole results from

the rotation of the ribs and the deformation of the costo-sternal

cartilage. Each rib is connected to two vertebrae by means of
three deformable elements, which represent the costo-vertebral
joint. These deformable elements have been chosen so that the
directional properties of the joint are represented and an axis
of great rotational flexibility was included. The ribs are con-

nected to the sternum through the costo-sternal joint by a deform-

able element, which represents the deformability of the costo-
cartilage. This model is thus quite adequate for representing the

additional bending stiffness of the torso that is provided by the

rib cage; on the other hand, it is not suitable for representing a §

frontal impact where significant deformations of the rib itself

may take place. For the latter, it would be necessary to represent
the deformation of the neck of the rib by modelling it by a beam
element.

The viscera are represented by a stack of hydrodynamic
elements, which are illustrated in Fig. 1C. The hydrodynamic %

elements have stiffness only when deformed axially, so that this

column does not have any resist- 1~ to shear. However because

i rigid endplates are included between each vertical layer of hydro- 1

dynamic elements, the system does resist bending and maintains

"', coherence in response to transverse loads. The very bottom plate
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of the viscera is connected to the pelvis, whereas the uppermnst
plate is connected to ribs 10 on the left and right side; this
interconnection represents the transfer f the lovad to the
diaphgram. No hydrodynamic elements are included within the thorax.
The inertial properties of this model were obtained by sub-
dividing the mass of each segment of the torso between the spine
and the ribs and sternum in the thoracic regions, and between the
spine and the viscera in the lumbar region. The distribution in
each segment was chosen so that the total mass of each segment
corresponds to the data of Liu, et al, and so t!} t the moment of
inertia of the masses of the components in each segment have a
moment of inertia equal to that measured by Liu, et al. Because
the mass of each body segment is partitioned into the inertia
associated with the spine and the inertia of the thorax, the
rotation of a body segment may differ from the rotation of an
ambedded vertebral body. The model of the thoracolumnar, cervi-
cal spine, head, seatback, restraints and pelvis are identical

to that of the previous model. Both the details of the geometry

and material properties may be found in Chapter IV.
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CHAPTER II

MATHEMATICAL FORMULATION OF MODEL

l. Nomenclature and Coordinate Transformations

A general description of the modeling techniques has
been given in Chapter 1. In this chapter, the detailed equations
and mathematical procedures for the formulation and solution of the
governing equations will be presented.

The cocrdinate systems have already been described in Chapter 1.
In addition tc a global coordinate system (x,y,2), local coordinates
for each element, (§,§,E)E, and for each node, (§,§,§)I, are used.
The unit vectors for these coordinate systems are (31,32,53)E, for
the coordinate system of element E and (31,32.33)1 for the coordinate
syztem of rigid body I.

The unit vectors giI and EiE immediately define the rotational
transformation of any vector components between the coordinate
systems. Thus, if we consider a vector A with global components
(Ax'Ay'Az)' body coordinate components (ﬁx,ﬂy,iz) and element coordin-

~ ~

ate components (Ax'Ay'Az)' we have the following transtormations

A = [A] {A} (2.1)

A b b b
y ’ ly 2y 3y

1z 22 3z




Similarly,

Ax elx ezx e3x fx
= e = A 2.2
Ay ey Sy 3y éy (u){a} ( )
Az e1z ezz €3z Az
E

where ey’ eiy’ eiz are the global components of the elemeant vectors.
Also

- T

{A} = [ {a} (2.3)

{a} = [u1*{a} (2.4)

The translational motion of the system is described by the displace-

ments u, 1 velocities ﬁiI’ and accelerations ﬁiI of the nodes.

Equations (2.1) to (2.4) can be written in indicial notation as

1
"

A, = A A, X -
i i3 d 3jivy (2.5)

>
|

RS RS
Al ulj ] i ujl j

The coordinate system in which a vector is expressed will hence-
forth be designated by the bars and hats. Thus the components of a

vector A in terms of the body coordinates of rigid body I are denoted

by AiI’ i =1 to 3 denoting AxI’ AyI' AzI’ respectively. Furthermore,

the set of three Cartesian components is often writier as a matrix
as in Eq. (2.3).

The orientation of a node is described by the unit vec:ors
BiI’ while the angular velocities and angular accelerations are

treated in body coordinate components, w,

i1 and o qr respectively.
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The forces and moments at the nodes are similarly denoted by FiI

and ﬁiI’ respectively, and may be subdivided into externally applied

forces and moments,F?ft and ﬁf;t, and the forces and moments due to
RS

the resistance of the deformable elements, Figtand ﬁi?t.
Only two unit vectors for the nodal coordinates, BlI and 531,

are stored per primary node. The third unit vector is then found by

> > >
b21 = b3I x b1I (2.6)

This method thus employs six numbers (three components of two vectors)

to describe the three rotational degrees of freedom. Though this at

first appears somewhat wasteful, it should be noted the alternative,

a description by Euler angles, has serious shortcomings:

1. Euler angle formulations are not linearly independent for all

values of the Euler angles.

2. The generalized moments corresponding to Euler angles are not

easily intrpreted in a physical sense.

3. The equations of motion and the transformations between body and

global coordinates in terms of Euler angles are complex and computa-

tionally demanding because they involve many trigonometric functions.
All six components are stored, Secause if only a total of

three of the six components of the two unit vectors were stored

(with the remaining components computed from the fact that the

two body vectors are orthogonal and unit vectors), then the vre-

maining components would have to be determined from square roots.

The signs of these components could not readily be determined.

Element nodal forces, moments, displacements and rotations are




-
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A e
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denoted by fiI’ miI‘ uiI' and eiI, respectively, where I denotes the

generic node number, which for each element ranges from 1 to the num-
ber of nodes in the element. Sometimes a superscript is used to
indicate the pertinent element, i.e. %{i) are force components at
node I of element e.

The inertial properties are described by the translational masses
of the primary nodes, Pyr and the principal moments of inertia of

the primary nodes,IxxJ, Iny, and Izsz The angular momenta of the

nodes are then given by

LjJ = Iijwa (no sum on J) (2.7)

The element quantities are extracted from the global quantities

in the usual manner by a Boolean connectivity matrix lgi), so that

(e) _ ,(e)
upt = Larougg (2.8)
] where
: j
i
H (e)
lAi = 1 if the Ath generic node of element e corresponds
to the Ith primary node of the system.
1
¢ (
e) _ .
2AI 0 otherwise
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2. Derivation of Equations of Motion

We consider here the development of the equations of motion for
the assemklage of rigid bodies and deformable elements. The
equations are obtained from the principle of virtual work with the
inertial forces included in a d'Alembert sense. The principle of
virtual work, when applied to the system treated here, states that

G(e)*g(e) + ole)r* ﬁ(e)

ia  tia iA iA
s, p€Xt - .« wert
= Mo WE i RO (242)

N
Pr Y51 Yir ~ “irlis

wilere the superscript e is summed over all elements. subscript A over
all nodes of each element, and I over all primary nodes. Superscript
dots denote time derivatives, while asterisks denote virtual quantities

The left hand side of Eq. (2.9) represents the rate of work
expended on the deformable elements, that is, the internal rate of
work, while the first two terms of the right hand side represent the
rate of external work. The rate of work of‘ the inertial forces is
represented by the last two terms of the right hand side.

To obtain the equations of motion, the virtual nodal velocities
of the element on the left hand side of Eq. (2.9) must be expressed in
terms of the global virtual nodal velocities. 1In deriving these
expressions we will separately consider the case whenA is a primary

node and when A is a secondary node.
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When A is a. primary node, the required relationships are obtained

directly from Egq. (2.5), which gives

A(e) _ (e) .

ut o= ujikAI qu (2.10)
~(e) _ {e)~-

Wia = Mjits5ktar %kr (2.11)

When A is a secondary node, the required relationships are
developed as follows. We note that whenever A is a secondary node

associated with a primary node J, then both nodes are points of a

single rigid body, so that

a.lge) = &y, (2.12)

and consequently Egq. (2.11) follows for the angular velocities. To
obtain the counterpart of Egq. (2.10), we first designate the vector
from I to A by iiIA' Because both points are on the same rigid body,

the components of this vector in the body coordinates will not vary with

tixe. The global components of this vector are given by

inA = AijijA . (2.13)
while the global components of the initial vector between I and A

are given by

iIA Aij ijA (2.14)
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where the superscript nought denotes the original (i.e. at time zero)

value of the variable. The displacement of the secondary node is

then given by

%A = Xia T Xia
(2.15)
° °
= Xir Y Xira T Xir T XiIa
By substituting Eqs. (2.13) and (2.14) into Eg. (2.15), we find
A, X A, X
Yia T %1 T A% T ti5%51a (25 16)

Transfcrming the above to the body coordinates of body I and taking

its derivative with respect to time, we find

uiA = uiI + Qij ij (2.17)
where
0 Zra YIa
Qij = “Z1a 0 Xra (2.18)
Yra X O

By again applying the appropriate transformations from Egs. (2.5),

we then find

éi(:) A P S W A 2 (2.19)

= H3i*Aar Y31 T ¥5i%9k ke AT Yer
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Egs. (2.10), (2.11), and (2.19) hold both for the actual

velocities and the virtual velccities., If we subsvitute these equa-
tions into the left hand side (LHS) of Fg. (2.9), using Eq. (2.10)
whenever node A is a primary node and En, (2.19) whenever A is a

secondary node, we obtain

LHS = ﬁ;IF;¥t + G;Iﬂi¥t (2.20)
where

F;Qt = zgi)f;:) (2.21)

ﬁi?t = 2§§)ﬁ£§) (2.22)
and

fpf‘j*) = ujiEigf) (2.23)

for both primary and secondary nodes A; while if A is primary

= (e)_ ~(e)
m = AjkujimiA (2.24)

and if A is secondary

(e) z(e)

- L A(e)
Mk = AucMeiMia * Qgtesug LT (2.25)

Equations (2.23) to (2.25) may be written in matrix form as follows

AL P (2.26)
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"(e)}

{m

(AT [ul (m} (2.27)

(e) }

{m 1T 1n) + 11T A T {E) (2.28)

Thus for primary nodes, the nodal forces and moments aré simply
related by the coordinate transformations, while for secondary nodes
an additional moment is introduced in the transformation because of
the moment arm effected by the vector between the nodes. The total
internal nodal forces are obtained from the terms given in Eqs. (2.23)
to (2.25) by Egs. (2.21) and (2.22). TlLe latter equations just re-
present an appropriate summation of the element forces, for as can
be seen from Eq. (2.8), 2£:) are Boolear matric=s consisting of ones
and zeroes.

The equations of motion are now obtained by substituting Eg.
(2.20) into Eg. (2.9), which gives (after a change of dummy indices

and collection of terms)

. * _int ext =
it Fit Fir + Ppuyqp)
- * =int -ext -
int _ ¥t 4§ ) = .
+ wiI(MlI MlI LlI) 0 (2.29)

Since the virtual velocities are arbitrary, the terms within the
parentheses must vanish. The terms within the first parenthesis

immediately yield the translational equations of motion

ext int (2.30)

SR E T BT (no sum on I)

Prldir
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We note from Eq. (2.7) that

3 = IijakJ + eiszikakalJ (no sum on J) (2.31a)

where eijz is the alternative tensor. By noting that the quantity

in the second parenthesis must vanish because of the arbitrariness of

w;I, we obtain

= = I o o - wext _ =int
Tika®a * C150tikavkaves = 453 Mys

(no sum on J)

coordinates are prinicpal coordinates of Ijk' we can

(2.31b)

Since the ii

write these equations as follows

= = - - —ext ~int
+ - = -
Lxr%r v (T,,1 Tyyr!oyr¥,r = Myp - BJ

(I -I o

= = sext _ =int
+ = -
InyayI xxI 2zI

“x1%21 T Myr T Mg

+ (I - N = = MeXt _ gint

Ioz1%1 yyI L xI 1%t T Mo M1

(2.32)
(no sum on I)

These are the rotational equations of motion, and they correspond

to the Euler equations.
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3. Deformable Elements

The deformable elements are treated by a rigid-convected (or
corotational) formulation previously described by Bely+schko and
Hsieh (1972). In this technique, the displacements of each element
are decomposed intc rigid body displacenents r, and deformation

displacements di

u, =r, + 4, (2.33)

The strains are then given by

. ad, a4,
e, = l(-} + »;1> (2.34)
i3 2004 x4

Belytschko and Hsieh have shown that the matrix gij cor-
responds to the difference between the stretch tensor and the
unit tensor. Hence, this strain corresponds closely to the common
definition of engineering strain.

For purposes of developing element relations, Eq. (2.33) is

expressed in matrix form

{e} = (E]{d} (2.35)

where {d} is the matrix of nodal deformation displacements. It is

also necessary to find a matrix [T] such that

{d} = (1]{n} (2.36)
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It then follows that the nodal element forces {f(e)} are given by
g9 = mTed) (2.37)

g9} = _/[EIT{S) av (2.38)
s |

where V is the volume of the element, {0} the stresses measured in

the corotational coordinates, and {fd} the nodal forces conjugate to

{d}, so that

wint o e Tied (2.39)

where W' is the internal work. Note that both {e} and (G} are
measured in corotational coordinates, so their rates or increments
are frame invariant and may be used directly .n incremental constitu-

tive equations without any corrections for rotations.

Spring Element. Consider a spring element with nodes I and J. The

deformation of the spring is completely defined by its change in length

5. =2-2°

1J (2.40)

where % and 2° are the current and original lengths of the element.
Since direct use of this formula will result in large round-off errors,
an alternative formula was used which is derived as follows. If

the displacement and position of the nodes are cor idered to be vectors,
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{x}; = {xb; = {x}] - {x}]

1t {u}J = {u}I (2.41)

J

Taking the scalar product of each side of this equation with itself,

if follows that

2 _ g°2 T . T \
22 = 2°% 4 2{X}JI {u}JI + {u}JI {u}JI (2.42)
where
= - X
{X}JI {X}J { }I etc.
after rearranging and factoring, it follows that
1-0° = 2 200 Trud o+ {u)l__T{u) (2.43)
° JI JI JI JI *
L+
or in component form
6. = 3-2° = 2 [2(x_.u +y_.u + z_.u
1J 1+2° JI xJI JIyJI J172JI)
2 2 2 Vi
tu gt uyJI + uzJI] (2.42)

The element strain is then given by

£ = (2.45)

Tar= el bt - &
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where A is the area of the cross-section.

The stress © may be an arbitrary function of g. In this program,

the stress~strain law is

o= kle + k2° + 28 (k1+3k25 Yp & (2.47)

where kl, k2 and B are constants input b’ the user; k, is the linear

1
spring constant. The last term is a linear viscosity with B the

fraction of critical damping for the vibration of this element.

Eecam Element. Consider a generic beam element with nodes I and J as shown in

¥Fig. 11. The % axis always moves with the beam element so that it
joins the two nodes, while the § arxis is considered to rotate witn
the beam in the sense that its rotation is an average of the rotation
of the two nodes about the x axis. The deformation of the beam is
then defined by its displacements relative to the rigid-convect=d

coordinates (X,y,2) of the element. The deformation displacements

are given by
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Figure 11. Beam element nomenclature.
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xJI’ eyI' O21

{a}" = {6 ) ) } (2.48)

13’ yd' “zJ

where GIJ = elongation, computed by Eq. (2.44)

exIJ = torsional deformation

e 0

A

v’ 621, ézJ = bending deformation rotations

Because of the way the motion of the x-axis is defined, the
rigid bddy motion r, need not be computed explicitly for the de-
composition needed in Egs. (2.33) and (2.34): the quantities de-
fined above define the deformation of the element directly regard-
less of the extent of rigid body rotation.

For the purpose of computing the relative rotations, aYI' ezI'
6yJ' ézJ, xJ1’ the body components of the unit vectors €l° and
32° (superscript noughts denote the vectors in the undeformed con-

and 8

figuration) must be stored for each of the two nodes of the element.

1° and 32°, the rotations

are found as follows. Since the vector El° rotates with the node, it

indicates the direction of the axis of the ele ent if there was no

From a knowledge of the body components of e

deformation; the anqgle between El° and 31 indicates Lhe magnitude of

the deformation, this is illustrated in Fig. 1L Thus

eyéz + 5233 = El x &,° (2.49)

For the purpo: : of this computation, we transform the components of

El° from body to element coordinates using Egs. (2.3) and (2.4) so

that
eix eix
S5, = (1T 2] &, (2.50)
éiz‘ e3,
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4 v Then substituting into Eq. (2.49), we find

’ e e e
é el 2 3 i
i A Sk ry 2 i
= = - + :
eye2 + eze3 det 1 0 0 elze2 elye3 1
ao aa ;o ,
} 1x 1y 1z (2‘51) v
; Thus :
L ‘
1 ~ ~ A "~
¢ = -af = e?
\ ey = -el, ez ely (2.52)

Trhe deformation torsional rotation is found by taking the cross-

q
i
3
A
Est

S o

product of 331 and EEJ and projecting this vector on the current

axis of the beam. This yields

T P VY o A et -

R
By

B
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e e, e3 %€

~ > -» -+ -+ - A A s
Oprg = @1+ (@37 X €35) = e . det tel,y o1 %o gh
o & &

x2J y2J z2J

. A T

N a§21a°zzJ - a;2J8;21 (2L S=)
Egs. (2.52) and (2.53) require the assumption that the deformation
j displacements of an element be small. This implies that the relative
' g rotations are sufficiently small so that the decomposition of the
! rotation vector into Sy and 52 implicit in Eq. (2.49) be valid, How- C
% ever, the overall rotation of the beam element may be arbitrarily
; large.

The deformation displacement field for the beam element is con-

sidered to consist of transverse displacements that are cubic
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functions of ﬁ, while the axial displacement is a linear function of

A

X. This can be written

dy = (1-8) dyr * £d, s (2.54a)
m - BE 2B ol F2:r3\0A
dy = (E~2E%+E )26zI + (-E£°+¢ )SLGzJ (2.54b)
mo_ 2_r3yv,A 2_ A
dz = (=E+2£°-¢ )ZBYI + (& 53)26yJ (2.54¢)
ex = gexJI (2.544)
where
£= % (2.54e)

and X is taken to originate at node I; the superscript m is used
to indicate that these are the displacements of the mid surface,
If we impose the usual Euler-Bernculli beam assumptions that normals

to the midline remain straight and normal, we obtain

. s . BED aag .\ . 0B

d =d -y ¥ -2 _24 944,23 X (2.55a)
x  x T Y3 5% ¥ 9y

a, = a§ - 26, (2.55b)

dz =4, + yex (2.55¢)

where H(y,z) is the warping function.
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